Advertisement
Review Article| Volume 47, ISSUE 2, P257-270, May 2020

Male Infertility and the Future of In Vitro Fertilization

Published:March 09, 2020DOI:https://doi.org/10.1016/j.ucl.2019.12.012

      Keywords

      To read this article in full you will need to make a payment

      Purchase one-time access:

      Academic & Personal: 24 hour online accessCorporate R&D Professionals: 24 hour online access
      One-time access price info
      • For academic or personal research use, select 'Academic and Personal'
      • For corporate R&D use, select 'Corporate R&D Professionals'

      Subscribers receive full online access to your subscription and archive of back issues up to and including 2002.

      Content published before 2002 is available via pay-per-view purchase only.

      Subscribe:

      Subscribe to Urologic Clinics
      Already a print subscriber? Claim online access
      Already an online subscriber? Sign in
      Institutional Access: Sign in to ScienceDirect

      References

        • Petok W.
        Infertility counseling (or the lack thereof) of the forgotten male partner.
        Fertil Steril. 2015; 104: 260-266
        • ASRM
        Diagnostic evaluation of the infertile male: a committee opinion.
        Fertil Steril. 2015; 103: 18-25
        • Fishel S.
        First in vitro fertilization baby - this is how it happened.
        Fertil Steril. 2018; 110: 5-11
        • CDC/SART
        2015 assisted reproductive technology fertility clinic success rates report.
        US Department of Health and Human Services, Atlanta (GA)2017
        • Sunderam S.
        • Kissen D.
        • Crawford S.
        • et al.
        Assisted reproductive technology surveillance - United States, 2015.
        MMWR Surveill Summ. 2018; 67: 1-28
        • Fauser B.
        Editorial: towards the global coverage of a unified registry of IVF outcomes.
        Reprod Biomed Online. 2019; 38: 133-137
      1. SART. National summary report: preliminary primary outcome per egg retrieval cycle. 2017 (Available at:) (Accessed June 12, 2019)
        • Edwards R.
        • Steptoe P.
        • Purdy J.
        Establishing full-term human pregnancies using cleaving embryos grown in vitro.
        Br J Obstet Gynaecol. 1980; 87: 737-756
        • Boulet S.
        • Mehta A.
        • Kissin D.
        • et al.
        Trends in use of and reproductive outcomes associated with intracytoplasmic sperm injection.
        JAMA. 2015; 313: 255-263
        • Mersereau J.
        • Stanhiser J.
        • Coddington C.
        • et al.
        Patient and cycle characteristics predicting high pregnancy rates with single-embryo transfer: an analysis of the Society for Assisted Reproductive Technology outcomes between 2004 and 2013.
        Fertil Steril. 2017; 108: 750-756
        • Mancuso A.
        • Boulet S.
        • Duran E.
        • et al.
        Elective single embryo transfer in women less than age 38 years reduces multiple birth rates, but not live birth rates, in United States fertility clinics.
        Fertil Steril. 2016; 106: 1107-1114
        • Glujovsky D.
        • Farquhar C.
        • Quinteiro-Retamar A.
        • et al.
        Cleavage stage versus blastocyst stage embryo transfer in assisted reproductive technology.
        Cochrane Database Syst Rev. 2016; (CD002118)
        • Franasiak J.
        • Forman E.
        • Patounakis G.
        • et al.
        Investigating the impact of the timing of blastulation on implantation: management of embryo-endometrial synchrony improves outcomes.
        Hum Reprod Open. 2018; 2018: hoy022
        • Neal S.
        • Morin S.
        • Franasiak J.
        • et al.
        Preimplantation genetic testing for aneuploidy is cost-effective, shortens treatment time, and reduces the risk of failed embryo transfer and clinical miscarriage.
        Fertil Steril. 2018; 110: 896-904
        • Waddington C.
        The epigenotype.
        Endeavour. 1942; 1: 18-20
        • Dada R.
        • Kumar M.
        • Jesudasan R.
        • et al.
        Epigenetics and its role in male infertility.
        J Assist Reprod Genet. 2012; 29: 213-223
        • Stuppia L.
        • Franzago M.
        • Ballerini P.
        • et al.
        Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health.
        Clin Epigenetics. 2015; 7: 120
        • Carrell D.
        The sperm epigenome: implications for assisted reproductive technologies.
        Adv Exp Med Biol. 2019; 1166: 47-56
        • Jenkins T.
        • Aston K.
        • James E.
        • et al.
        Sperm epigenetics in the study of male fertility, offspring health, and potential clinical applications.
        Syst Biol Reprod Med. 2017; 63: 69-76
        • Schon S.
        • Luense L.
        • Wang X.
        • et al.
        Histone modification signatures in human sperm distinguish clinical abnormalities.
        J Assist Reprod Genet. 2019; 36: 267-275
        • Tang Q.
        • Pan F.
        • Yang J.
        • et al.
        Idiopathic male infertility is strongly associated with aberrant DNA methylation of imprinted loci in sperm: a case-control study.
        Clin Epigenetics. 2018; 10: 134
        • Levine H.
        • Jorgensen N.
        • Martino-Andrade A.
        • et al.
        Temporal trends in sperm count: a systematic review and meta-regression analysis.
        Hum Reprod Update. 2017; 23: 646-659
        • Aston K.
        • Uren P.
        • Jenkins T.
        • et al.
        Aberrent sperm DNA methylation predicts male fertility status and embryo quality.
        Fertil Steril. 2015; 104: 1388-1397
        • Giacone F.
        • Cannarella R.
        • Mongioi L.
        • et al.
        Epigenetics of male fertility: effects on assisted reproductive techniques.
        World J Mens Health. 2018; 36: 1-9
        • Katari S.
        • Turan N.
        • Bibikova M.
        • et al.
        DNA methylation and gene expression differences in children conceived in vitro or in vivo.
        Hum Mol Genet. 2009; 18: 3769-3778
        • Ceelen M.
        • VanWeissenbruch M.
        • Vermeiden J.
        • et al.
        Cardiometabolic differences in children born after in vitro fertilization.
        J Clin Endocrinol Metab. 2008; 93: 1682-1688
        • Berntsen S.
        • Soderstrom-Anttila V.
        • Wennerholm U.
        • et al.
        The health of children conceived by ART: 'the chicken or the egg?'.
        Hum Reprod Update. 2019; 25: 137-158
        • Niemitz E.
        • Feinberg A.
        Epigenetics and assisted reproductive technology: a call for investigation.
        Am J Hum Genet. 2004; 74: 599-609
        • Jiang Z.
        • Wang Y.
        • Lin J.
        • et al.
        Genetic and epigenetic risks of assisted reproduction.
        Best Pract Res Clin Obstet Gynaecol. 2017; 44: 90-104
        • Schagdarsurengin U.
        • Steger K.
        Epigenetics in male reproduction: effect of paternal diet on sperm quality and offspring health.
        Nat Rev Urol. 2016; 13: 584-595
        • Skinner M.
        Environmental epigenetic transgenerational inheritance and somatic epigenetic mitotic stability.
        Epigenetics. 2011; 6: 838-842
        • Stouffs K.
        • Vandermaelen D.
        • Tournaye H.
        • et al.
        Genetics and male infertility.
        Verh K Acad Geneeskd Belg. 2009; 71: 115-139
        • Plaseski T.
        • Noveski P.
        • Popeska Z.
        • et al.
        Association study of single-nucleotide polymorphisms in FASLG, JMJDIA, LOC203413, TEX15, BRDT, OR2W3, INSR, and TAS2R38 genes with male infertility.
        J Androl. 2012; 33: 675-683
        • ZC A.
        • Zhang S.
        • Yang Y.
        • et al.
        Single nucleotide polymorphisms of the gonadotrophin-regulated testicular helicase (GRTH) gene may be associated with human spermatogenesis impairment.
        Hum Reprod. 2006; 21: 755-759
        • Ni M.
        • Zhi H.
        • Liu S.
        • et al.
        Single nucleotide polymorphism of the TP53 gene is not correlated with male infertility.
        Zhonghua Nan Ke Xue. 2017; 23: 142-146
        • Zhu P.
        • Wu Q.
        • Yu M.
        • et al.
        Nucleotide polymorphism rs4880 of the SOD2 gene and the risk of male infertility.
        Zhonghua Nan Ke Xue. 2017; 23: 137-141
        • DT Carrell K.A.
        The search for SNPs, CNVs, and epigenetic variants associated with the complex disease of male infertility.
        Syst Biol Reprod Med. 2011; 57: 17-26
        • Lou T.
        • Chen H.
        • Zou Q.
        • et al.
        A novel copy number variation in CATSPER2 causes idiopathic male infertility with normal semen parameters.
        Hum Reprod. 2019; 34: 414-423
        • Tuttelmann F.
        • Simoni M.
        • Kliesch S.
        • et al.
        Copy number variants in patients with severe oligozoospermia and Sertoli-cell-only syndrome.
        PLoS One. 2011; 6: e19426
        • Wang C.
        • Swerdloff R.
        Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests.
        Fertil Steril. 2014; 102: 1502-1507
        • VuBach P.
        • Schlegel P.
        Sperm DNA damage and its role in IVF and ICSI.
        Basic Clin Androl. 2016; 26: 15
        • Evenson D.
        • Jost L.
        • Marshall D.
        • et al.
        Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic.
        Hum Reprod. 1999; 14: 1039-1049
        • Simon L.
        • Lutton D.
        • McManus J.
        • et al.
        Sperm DNA damage measured by the alkaline comet assay as an independent predictor of male infertility and in vitro fertilization success.
        Fertil Steril. 2011; 95: 652-657
        • Ribeiro S.
        • Sharma R.
        • Gupta S.
        Inter- and intra-laboratory standardization of TUNEL assay for assessment of sperm DNA fragmentation.
        Andrology. 2017; 5: 477-485
        • Suganama R.
        • Yanagimachi R.
        • Meistrich M.
        Decline in fertility of mouse sperm with abnormal chromatin during epididymal passage as revealed by ICSI.
        Hum Reprod. 2005; 20: 3101-3108
        • Gawecka J.
        • Boaz S.
        • Kasperson K.
        • et al.
        Luminal fluid of epididymis and vas defeerens contributes to sperm chromatin fragmentation.
        Hum Reprod. 2015; 30: 2725-2736
        • Esteves S.
        • Sanchez-Martin F.
        • Sanchez-Martin P.
        • et al.
        Comparison of reproductive outcome in oligozoospermic men with high sperm DNA fragmentation undergoing intracytoplasmic sperm injection with ejaculated and testicular sperm.
        Fertil Steril. 2015; 104: 1398-1405
        • Mehta A.
        • Bolyakov A.
        • Schlegel P.
        • et al.
        Higher pregnancy rates using testicular sperm in men with severe oligospermia.
        Fertil Steril. 2015; 104: 1382-1387
        • Morin S.
        • Hanson B.
        • Juneau C.
        • et al.
        A comparison of the relative efficiency of ICSI and extended culture with epididymal sperm versus testicular sperm in patients with obstructive azoospermia.
        Asian J Androl. 2019; https://doi.org/10.4103/aja.aja_58_19
        • Silber S.
        • Devroey P.
        • Tournaye H.
        • et al.
        Fertilizing capacity of epididymal and testicular sperm using intracytoplasmic sperm injection (ICSI).
        Reprod Fertil Dev. 1995; 7: 281-292
        • Deng C.
        • Li T.
        • Xie Y.
        • et al.
        Sperm DNA fragmentation index influences assisted reproductive technology outcome: a systematic review and meta-analysis combined with a retrospective cohort study.
        Andrologia. 2019; 51: e13263
        • Cissen M.
        • Wely M.
        • Scholten I.
        • et al.
        Measuring sperm DNA fragmentation and clinical outcomes of medically assisted reproduction: a systematic review and meta-analysis.
        PLoS One. 2016; 11: e0165125
        • Polge C.
        Low-temperature storage of mammalian spermatozoa.
        Proc R Soc Lond B Biol Sci. 1957; 147: 498-508
        • Schachter-Safrai N.
        • Karavani G.
        • Levitas E.
        • et al.
        Does cryopreservation of sperm affect fertilization in nonobstructive azoospermia or cryptozoospermia.
        Fertil Steril. 2017; 107: 1148-1152
        • VanSteirteghem A.
        • Nagy P.
        • Joris H.
        • et al.
        Results of intracytoplasmic sperm injection with ejaculated, fresh, and frozen-thawed epididymal and testicular spermatozoa.
        Hum Reprod. 1998; 13: S134-S142
        • Gil-Salom M.
        • Romero J.
        • Minguez Y.
        • et al.
        Pregnancies after intracytoplasmic sperm injection with cryopreserved testicular spermatozoa.
        Hum Reprod. 1996; 11: 1309-1313
        • Ben-Yosef D.
        • Yogev L.
        • Hauser R.
        • et al.
        Testicular sperm retrieval and cryopreservation prior to initiating ovarian stimulation as the first line approach in patients with non-obstructive azoospermia.
        Hum Reprod. 1999; 14: 1794-1801
        • Kuczynski W.
        • Dhont M.
        • Grygoruk C.
        • et al.
        The outcome of intracytoplasmic injection of fresh and cryopreserved ejaculated spermatozoa -- a prospective randomized study.
        Hum Reprod. 2001; 16: 2109-2113
        • Zhu W.
        • Liu X.
        Cryodamage to plasma membrane integrity in head and tail regions of human sperm.
        Asian J Androl. 2000; 2: 135-138
        • Palomar-Rios A.
        • Gascon A.
        • Martinez J.
        • et al.
        Sperm preparation after freezing improves motile sperm count, motility, and viability in frozen-thawed sperm compared with sperm preparation before freezing-thawing process.
        J Assist Reprod Genet. 2018; 35: 237-245
        • Ohlander S.
        • Hotaling J.
        • Kirshenbaum E.
        • et al.
        Impact of fresh versus cryopreserved testicular sperm upon intracytoplasmic sperm injection pregnancy outcomes in men with azoospermia due to spermatogenic dysfunction: a meta-analysis.
        Fertil Steril. 2014; 101: 344-349
        • Aoki V.
        • Wilcox A.
        • Thorp C.
        • et al.
        Improved in vitro fertilization embryo quality and pregnancy rates with intracytoplasmic sperm injection of sperm from fresh testicular biopsy samples vs. frozen biopsy samples.
        Fertil Steril. 2004; 82: 1532-1535
        • Alshawa E.
        • Laggan M.
        • Montenarh M.
        • et al.
        Influence of cryopreservation on the CATSPER2 and TEKT2 expression levels and protein levels in human spermatozoa.
        Toxicol Rep. 2019; 6: 819-824
        • O'Neill H.
        • Nikoloska M.
        • Ho H.
        • et al.
        Improved cryopreservation of spermatozoa using vitrification: comparison of cryoprotectants and a novel device for long-term storage.
        J Assist Reprod Genet. 2019; 36: 1713-1720
        • Berkovitz A.
        • Miller N.
        • Silberman M.
        • et al.
        A novel solution for freezing small numbers of spermatozoa using a sperm vitrification device.
        Hum Reprod. 2018; 33: 1975-1983
        • Isachenko E.
        • Isachenko V.
        • Weiss J.
        • et al.
        Acrosomal status and mitochondrial activity of human spermatozoa vitrified with sucrosse.
        Reproduction. 2008; 136: 167-173
        • NCHS
        National Center for Health Statistics: health, United States, 2008, with chartbook.
        National Center for Health Statistics, Hyattsville, MD2009
        • Craig J.
        • Jenkins T.
        • Carrell D.
        • et al.
        Obesity, male infertility, and the sperm epigenome.
        Fertil Steril. 2017; 107: 848-859
        • Raad G.
        • Hazzouri M.
        • Bottini S.
        • et al.
        Paternal obesity: how bad is it for sperm quality and progeny health?.
        Basic Clin Androl. 2017; 27: 20
        • Soubry A.
        • Guo L.
        • Huang Z.
        • et al.
        Obesity-related DNA methylation at imprinted genes in human sperm: results from the TIEGER study.
        Clin Epigenetics. 2016; 8: 51
        • Donkin I.
        • Versteyhe S.
        • Ingerslev L.
        • et al.
        Obesity and bariatric surgery drive epigenetic variation of spermatozoa in humans.
        Cell Metab. 2015; 23: 369-378
        • Campbell J.
        • Lane M.
        • Owens J.
        • et al.
        Paternal obesity negatively affects male fertility and assisted reproduction outcomes: a systematic review and meta-analysis.
        Reprod Biomed Online. 2015; 31: 593-604
        • Kim J.
        • Morin S.
        • Patounakis G.
        • et al.
        ABC Trial: appraisal of body content. Frozen embryo cycles are not impacted by the negative effects of obesity seen in fresh cycles.
        Fertil Steril. 2018; 110: e68-e69
        • Martin J.
        • Hamilton B.
        • Osterman M.
        • et al.
        Final Data for 2016.
        Natl Vital Stat Rep. 2018; 67: 1-55
        • Wu Y.
        • Kang X.
        • Zheng H.
        • et al.
        Effect of paternal age on reproductive outcomes of in vitro fertilization.
        PLoS One. 2015; 10: e0135734
        • Sharma R.
        • Agarwal A.
        • Rohra V.
        • et al.
        Effects of increased paternal age on sperm quality, reproductive outcome and associated epigenetic risks to offspring.
        Reprod Biol Endocrinol. 2015; 13: 35
        • Tiegs A.
        • Sachdev N.
        • Grifo J.
        • et al.
        Paternal age is not associated with pregnancy outcomes after single thawed euploid blastocyst transfer.
        Reprod Sci. 2017; 24: 1319-1324
        • Rosiak-Gill A.
        • Gill K.
        • Jakubik J.
        • et al.
        Age-related changes in human sperm DNA integrity.
        Aging. 2019; 11: 5399-5411
        • Cioppi F.
        • Casamonti E.
        • Krausz C.
        Age-dependent de novo mutations during spermatogenesis and their consequences.
        Adv Exp Med Biol. 2019; 1166: 29-46
        • Campbell I.
        • Stewart J.
        • James R.
        • et al.
        Parent of origin, mosaicism, and recurrence risk: probilistic modeling explains the broken symmetry of transmission genetics.
        Am J Hum Genet. 2014; 95: 345-359
        • Palermo G.
        • Munne S.
        • Cohen J.
        The human zygote inherits its mitotic potential from the male gamete.
        Hum Reprod. 1994; 9: 1220-1225
        • Frattarelli J.
        • Miller K.
        • Miller B.
        • et al.
        Male age negatively impacts embryo development and reproductive outcome in donor oocyte assisted reproductive technology cycles.
        Fertil Steril. 2008; 90: 97-103
        • Sagi-Dain L.
        • Sagi S.
        • Dirnfeld M.
        Effect of paternal age on reproductive outcomes in oocyte donation model: a systematic review.
        Fertil Steril. 2015; 104: 857-865
        • Hanson B.
        • Kim J.
        • Osman E.
        • et al.
        Increased paternal age is associated with decreased blastulation and euploid rates but not pregnancy outcomes in the setting of a euploid single embryo transfer.
        Fertil Steril. 2019; 112: e142-e143
        • Hanson B.
        • Kim J.
        • Tiegs A.
        • et al.
        The impact of paternal age on reproductive outcomes in the setting of a euploid single embryo transfer achieved with surgically extracted sperm.
        Fertil Steril. 2019; 112: e108
        • Nosrati R.
        • Graham P.
        • Zhang B.
        • et al.
        Microfluidics for sperm analysis and selection.
        Nat Rev Urol. 2017; 14: 707-730
        • Suarez S.
        • Wu M.
        Microfluidic devices for the study of sperm migration.
        Mol Hum Reprod. 2017; 23: 227-234
        • Quinn M.
        • Jalalian L.
        • Ribeiro S.
        • et al.
        Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim-up in split semen samples.
        Hum Reprod. 2018; https://doi.org/10.1093/humrep/dey239
        • Yalcinkaya-Kalyan E.
        • Can-Celik S.
        • Okan O.
        • et al.
        Does a microfluidic chip for sperm sorting have a positive add-on effect on laboratory and clinical outcomes of intracytoplasmic sperm injection cycles? A sibling oocyte study.
        Andrologia. 2019; 51: e13403
        • Yildiz K.
        • Yuksel S.
        Use of microfluidic sperm extraction chips as an alternative method in patients with recurrent in vitro fertilisation failure.
        J Assist Reprod Genet. 2019; 36: 1423-1429
        • Eravuchira P.
        • Mirsky S.
        • Barnea I.
        • et al.
        Individual sperm selection by microfluidics integrated with interferometric phase microscopy.
        Methods. 2018; 136: 152-159
        • Weng L.
        IVF-on-a-chip: recent advances in microfluidics technology for in vitro fertilization.
        SLAS Technol. 2019; 24: 373-385
        • DeWagenaar B.
        • Berendsen J.
        • Bomer J.
        • et al.
        Microfluidic single sperm entrapment and analysis.
        Lab Chip. 2015; 15: 1294-1301
        • Samuel R.
        • Badamjav O.
        • Murphy K.
        • et al.
        Microfluidics: the future of microdissection TESE?.
        Syst Biol Reprod Med. 2016; 62: 161-170